
Web 2.0-Based Social Informatics Data Grid
Wenjun Wu

University of Chicago & Argonne
National Laboratory,

9700 S Cass Ave, Argonne, IL 60439
wwj@ci.uchicago.edu

Thomas Uram
University of Chicago & Argonne

National Laboratory,
9700 S Cass Ave, Argonne, IL 60439

turam@ ci.uchicago.edu

Michael E. Papka
University of Chicago & Argonne

National Laboratory,
9700 S Cass Ave, Argonne, IL 60439

papka@ ci.uchicago.edu

ABSTRACT
The Social Informatics Data Grid (SIDGrid) is a new

cyberinfrastructure designed to transform how social and
behavioral scientists collect and annotate data, collaborate and
share data, and analyze and mine large data repositories. The
major design goals for the SIDGrid are to integrate those
commonly used social and behavior science tools and provide
researchers an easy-to-use web interface to run these data
intensive applications efficiently on TeraGrid resources. SIDGrid
is also a collaborative environment where scientists can share
experimental data and analysis results with their team members.

OpenSocial, a social networking framework initiated by
Google, provides a Web 2.0 approach to integration of web
applications and building collaborative cyber environments. Using
OpenSocial, we present a new application framework for SIDGrid
that enables scientists to define their analysis tools in XML and
generate application gadgets as a Web 2.0 interface for running
analytical workflows on TeraGrid. Based on this framework, we
have developed a new SIDGrid science gateway to improve the
user’s experience and simplify SIDGrid application management
and development of collaborative web applications.

Categories and Subject Descriptors

H.3.5 [Online Information System]: Web-based Services

General Terms
Design

Keywords
OpenSocial, Gadget, Web 2.0, TeraGrid, Social and Behavioral
Science.

1. INTRODUCTION
The Social Informatics Data Grid (SIDGrid) [1] is a new

cyberinfrastructure designed to transform how social and
behavioral scientists collect and annotate data, collaborate and
share data, and analyze and mine large data repositories. The
grand challenge in social and behavioral science is how to model
human behavior as a dynamic, multicausal system that occurs
over multiple time scales. To meet this challenge, behavioral
scientists must store multiple measures of neural, cognitive, and
social behaviors of humans into a common database so that they
can access and analyze these measures at multiple levels
simultaneously in a collaborative way.

Because of the diversity of the datasets in the social and
behavioral sciences, researchers need to utilize numerous analysis
tools to retrieve the features from text, images, audio, video, and
sensor data. Moreover, analysis tasks for behavioral science
research usually require extensive computational resources
provided by Grid-enabled problem solving environments such as
TeraGrid. The major design goals for the SIDGrid are to integrate
those commonly used social and behavioral science tools and
provide researchers an easy-to-use web interface to run these
application tools over their massive datasets efficiently on
TeraGrid resources. SIDGrid also seeks to provide a collaborative
environment where scientists can share their experimental data
and analysis results with their team members.

To achieve these goals, we need an application framework for
users to easily integrate new analysis tools into the SIDGrid and
expose these tools as web services. Such a framework should
allow users to describe their scientific applications and generate
web interfaces for these applications automatically. The
framework should also efficiently manage and execute
computational workflows for the applications on the TeraGrid
resources. Although considerable research [2][3] has explored
ways to generate application-specific user interfaces, wrap
scientific applications as web services, and run these services on
Grid environments, we believe that new exploration should be
conducted to find out how Web 2.0 technologies can be applied to
the same problems with innovative solutions.

OpenSocial [4], a social networking framework initiated by
Google, presents a Web 2.0 approach to the integration of web
applications and the construction of collaborative cyber
environments. In OpenSocial, every web application is regarded
as a gadget, which can define its HTML content and control logic
in client-side JavaScript. OpenSocial also provides a social data
API to access information about people, their friends, and their
data, within the context of an OpenSocial container.

OpenSocial gadgets as client-side web applications are ideal
candidates for the rich web interface of the SIDGrid applications.
Using OpenSocial, therefore, we have developed a new
application framework for SIDGrid and have used the framework
to construct a SIDGrid science gateway that can improve user
experience, simplify the SIDGrid application management, and
promote scientific collaborations among SIDGrid users.

This paper is organized as follows. Section 2 gives an
overview of the SIDGrid framework. Section 3 presents the
details about the application and workflow management of the
framework. In Section 4, we discuss how to use the OpenSocial
framework to manage SIDGrid applications gadgets and build
collaborative gadgets based on the SIDGrid data model. Section 5
summarizes our work and our conclusions.

2. SIDGrid Web 2.0 Framework Overview
We selected OpenSocial as the basis for the SIDGrid Web 2.0

framework. It standardizes the practices of both gadget

programming and online social networking, enabling web
developers to write social gadgets that can run in any OpenSocial-
compliant container. To have the SIDGrid server become a host
environment for OpenSocial gadgets, we developed an application
framework that implements all the necessary services, including
gadget rendering and access to social data .

Specifically, we reused an application description tool named
Mobyle [5] from the bioinformatics community for SIDGrid users
to describe the command-line syntax for their applications. From
the Mobyle XML description, the SIDGrid framework can
generate application gadgets that can be flexibly integrated into
OpenSocial-compliant web sites such as iGoogle and MySpace.
For the workflow management, the Swift [6] workflow engine is
used to run SIDGrid application workflows on TeraGrid; we
chose Swift because it is designed for loosely coupled, data-
intensive computing on Grid environments.

Figure 1 shows the basic structure of the SIDGrid science
gateway. The major components in the SIDGrid application
framework consist of five functional subsystems: the application
management module, the gadget hosting module, the SIDGrid
web services module, the workflow execution module, and the
SIDGrid data management module.

In the application management module, the application registry
keeps the meta-information of SIDGrid application tools, which
lists the command-line syntax, the installation locations, and the
run-time requirements of all the deployed SIDGrid applications.
We customized Mobyle, which is a XML description schema
designed to specify the command-line syntax of bioinformatics
tools, for the description of the SIDGrid applications. Through the
SIDGrid application builder page, a user can define the command-
line format for his program in the Mobyle XML file, preview the
web interface created by the gadget generator from the XML file,
and import the interface to the SIDGrid.

Figure 1. SIDGrid Web2.0 framework.
In the application management module, the application

registry keeps the metainformation of SIDGrid application tools,
which lists the command-line syntax, the installation locations,
and the run-time requirements of all the deployed SIDGrid
applications. We customized Mobyle, which is an XML
description schema designed to specify the command-line syntax
of bioinformatics tools, for the description of the SIDGrid
applications. Through the SIDGrid application builder page, a
user can define the command-line format for his program in the
Mobyle XML file, preview the web interface created by the
gadget generator from the XML file, and import the interface to
the SIDGrid.

The gadget hosting module renders the generated application
gadgets and provides the gadget instances proxy services to fetch
web contents from the SIDGrid or other external data sources.
Shindig [7], an OpenSocial reference implementation, becomes
the foundation for the development of this module. A more
detailed description of Shindig and the OpenSocial software stack
can be found in Section 4.

Clearly, SIDGrid gadgets need more SIDGrid-specific
services besides the standard gadget I/O services from Shindig.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GCE’09, Nov 20, 2009, Portland, Oregon, USA.
Copyright © 2009 ACM ISBN 978-1-60558-887-2/2009/11... $10.00".

All the SIDGrid-specific communication services are available
through the SIDGrid web services module. They offer RESTful
web services and the JSON-RPC service to those generated
application gadgets to create workflow instances, search for the
relationship between SIDGrid users, and query the SIDGrid
experiment data.

The workflow execution module is built on top of the Swift
package, which is a workflow system for large-scale, loosely
coupled parallel computation. It enables behavior science analysis
applications to process large datasets in a parallel way. Each
user’s request for SIDGrid to run an application on his data files is
translated into a Swift script. The flexible file mapping
mechanism in Swift enables the user to run the analysis on either a
single data file or multiple data files.

A workflow request is first recorded in a persistent database
that is polled by the Swift engine daemon. This daemon executes
the workflows by running a shared Swift engine instance for all of
them. Because the Swift engine has a weighted scheduling
mechanism for the job execution, the daemon can dynamically
decide the best TeraGrid resources that are available to run the
SIDGrid workflows and can resubmit any failed jobs. Based on
the log files produced by the Swift engine during the execution of
the workflows, the Swift daemon monitors their progress and
updates their status in the workflow database, which can be
visualized on the SIDGrid workflow monitor gadget.

The SIDGrid data model is designed for behavior and social
science research. The basic management unit is a SIDGrid
experiment, which usually consists of multiple video and audio
files, annotation data, timer-series files, and linked files. On the
basis of this data model, the SIDGrid data management module
allows users to create their SIDGrid experiments, to import and
export research data files, to add semantic tags for the data, and to
query the data files.

3. SIDGrid Scientific Application and
Workflow Management
In this section we present an example of using the SIDGrid Web
2.0 framework to define applications, create application gadgets,
and run workflows. The science application in this example is
Praat [8], a popular tool for speech analyses such as spectrum,
pitch, and intensity in phonetics. Some SIDGrid users from the
domain of linguistics research use Praat to carry out experiments
on prosodic analysis.

3.1 Application XML Description
Mobyle defines an XML schema that can be used to describe

any command-line program. It allows users to specify the type,
name, and format of each argument in a flexible way. Short
python or perl code snippets can be inserted into a Mobyle
description to express the dependence of the arguments and
generate the appropriate argument format. Figure 2 displays a

segment of the Mobyle XML description for Praat.

Figure 2. Praat XML description.

SIDGrid users who know Mobyle well and have a complex
command-line syntax to define can directly write down their
XML file and upload to the SIDGrid. In most cases, however,
users do not wish to spend time learning the Mobyle and prefer to
describe their applications through a simple web interface. We
developed such a builder page (see Figure 3), called the SIDGrid
application builder, so that users can define the command-line
format for their programs in the Mobyle XML, preview the web
interface generated by the gadget generator from the XML file,
and import the interface to the SIDGrid.

 <parameters>
 <parameter ismandatory="1" issimple="1" ismaininput="1">
 <name>inscript</name>
 <prompt lang="en">praat script file</prompt>
 <type>
 <datatype>
 <class>File</class>
 </datatype>
 </type>
 <format>
 <code proglang="python"> ("",str(value))[value is not
None]</code>
 </format>
 <argpos>1</argpos>
 </parameter>
 <parameter ismandatory="1" issimple="1" ismaininput="1">
 <name>infile</name>
 <prompt lang="en">praat data wave file</prompt>
 <type>
 <datatype>
 <class>File</class>
 </datatype>
 </type>
 <format>
 <parameter ismandatory="1" issimple="1" isoutput="1">
 <name>outfile</name>
 <prompt lang="en">praat transformation output file</prompt>
 <type>
 <datatype>
 <class>File</class>
 </datatype>
 </type>
 <format>
 <code proglang="python"> ("",str(value))[value is not
None]</code>
 </format>
 <argpos>1</argpos>
 </parameter>
 </parameters>
</program>

Figure 3. SIDGrid application management page.

3.2 Application Gadget Generator
The gadget generator can create an OpenSocial gadget that

consists of the gadget metadata, as well as HTML markups and
JavaScript codes, from the Mobyle XML description of each
SIDGrid application by using XSLT templates. The XSLT
template in the generator transforms the application XML into an
HTML snippet with a predefined CSS style sheet. A JavaScript
template is used to produce JavaScript code for OAuth [9]
security handling, parameter marshalling, and invocation of the
generic JSON-RPC service. The JavaScript code segment for the
Praat gadget is illustrated in Figure 4.

Figure 4. JavaScript code in the generated Praat gadget.

3.3 Application Service Deployment
After completing the definition of an application, the user will

face another problem: how to deploy the executable application
package for this application onto the TeraGrid resources and set
up an appropriate transformation registry entry in the Swift engine
to invoke the installed package. It is still tricky to achieve
automatic deployment of any application under the TeraGrid
community account allocation [10] without involving the

administrators of science gateways. Therefore, instead of allowing
users to install application packages dynamically, we introduce a
collaborative mechanism between administrators and users to
work together to deploy the application. When a user finishes a
new application XML description in the SIDGrid Application
Builder, he can request the administrator to deploy this new
application on TeraGrid. Following the URL to the application
package, the administrator can download the package, install it,
and test it on multiple TeraGrid clusters. After the application is
successfully deployed, the gadget and RPC service for this
application will be activated and made available for users.

3.4 Generic JSON-RPC Service and
Workflow Script Generator

A generic JSON-RPC service is designed to handle AJAX
requests from SIDGrid gadgets for workflow operations including
initiation, status query and result retrieval. Figure 5 shows four
major methods of the service.

Figure 5. Generic RPC service interface.

The service unmarshals RPC requests from gadgets and calls both
database handlers to initializes the workflow object in the
database and a workflow script generator to compose workflow
scripts for the Swift engine to execute on the TeraGrid resources.
For example, when a user launches the Praat gadget to run a pitch
analysis on a audio wave file, the service gets the input
parameters, including the input script file path, the input audio file
path, and the output file name. Given the input parameters for the
run, the script generator parses the Mobyle XML of the
application, formats the command for this application, and
produces a Swift script for this run (Figure 6). This script consists
of four parts: a file type declaration, a Praat transformation
procedure that contains the Praat command line, a group of file
mappings linking the logical file variables with physical data files,
and the final statement that calls the transformation.

rkflow script (if a single data file is selected)

4. OpenSocial framework in SIDGrid
Although the SIDGrid Gadgets can run on any public OpenSocial
containers such as iGoogle and MySpace, some SIDGrid users

Figure 6. Generated Swift script for running Praat.
Because social and behavioral science data are collected from
human beings, data security is an important concern. To protect

Interface Generic JSONRPC Service
{
String WorkflowID runWorkflow(String application,
Hashmap<String,String> params);
String checkStatus(String workflowId);
// get the rest links to the output files
List<URL> getResults(String workflowId);
String stopWorkflow(String workflowId);
}

function runPraat(){
 // create a JSONRpcClient object
 jsonrpc = new JSONRpcClient("/SIDGrid/JSON-RPC");
 var params = new Object();
 // java class hint
 params.javaClass = 'java.util.Hashtable';
 params.map = {};
 params.map[‘inscript] = document.getElementById("inscript
").value;
 params.map['infile’] =
document.getElementById("infile").value;
 params.map['outfile'] =
document.getElementById("outfile").value;
 // Hashtable params
 result = jsonrpc.JobService.run("praat", params);

type File
(File outfile) runpraat(File inscript, File infile){
 praat @inscript @infile @outfile
}
file mapper
File inscript <single_file_mapper;file="@exp/script">;
File infile <single_file_mapper;file="@exp/input">;
File outfile <single_file_mapper;file="@exp/output">;
outfile = runpraat(inscript, infile);

the privacy of studied subjects, researchers usually do not want to
make their data available to the public. It is essential, therefore, to
set up a private OpenSocial container for rendering the SIDGrid
gadgets to alleviate the privacy concern.

Figure 6. OpenSocial container stack
Figure 6 illustrates the major components in an OpenSocial
container. A gadget server can parse a gadget XML file and
render this gadget into HTML and JavaScript codes consisting of
user codes and the OpenSocial supporting library. The gadget
server also provides communication service to gadgets, especially
cross-domain proxy to support gadgets.io.makerequest. The
Social Data API Server acts as an interface for OpenSocial
gadgets to access the social data provided by external data source.
Through this interface, a gadget can retrieve a user’s profile, find
friends for a user, and display activities for users.

We note that Shindig is not a full-fledged OpenSocial container
because it still has no services such as gadgets layout, gadgets
management, and security. By using the building blocks in the
Shindig’s package, however, we can easily transform the SIDGrid
dynamic web pages into a client-side OpenSocial gadget
container. We also developed the server-side code to handle the
gadget management and regular web security that are built on top
of HTTPS and user-password based authentication.

4.1 Gadget Rendering
Figure 7 shows SIDGrid ExperimentView page that presents users
the details of a selected experiment including ownership and data
files. On the page, users can pick up files and choose
transformations to run on them. In Figure 7, the Praat
transformation and the pitch script are selected to run on the wave
file elanexample1.wav. The Praat UI is displayed as a Praat
gadget loaded within an iframe in the page. This iframe, which
isolates the JavasScript code in the gadget from the container
page, needs an src attribute set to a URL pointing to the gadget
renderer of the server. Here the gadget renderer is the embedded
Shindig server in the SIDGrid.

Figure 7. SIDGrid gadget container page.

This URL link has an important parameter called the security
token. This is a short-lived token that has encoded in it all the
necessary information about the site, gadget, and viewer. Once a
SIDGrid gadget is initialized, it parses the security token in the
URL and reads the OwnerID field as a user ID for calling
SIDGrid JSON-RPC application services.

Using the security token raises a security issue, however. The
Shindig package provides no authentication mechanism to prevent
malicious users from faking a security token with a user identity
of others and accessing the SIDGrid services on the identity.
Therefore, we must encrypt the security token and restrict the
access endpoints to the Shindig server. The Apache Shindig
package supports encrypted security token, which requires a
shared key file between the gadget container page and the Shindig
server. By using this shared key, the SIDGrid container page
creates an encrypted security token for any gadget hosted in the
container. Shindig’s gadget renderer can decode the security token
and then pass the token to the initialized gadget instance. We can
also place the access control list for the gadget rendering.
Currently the SIDGrid Shindig server accepts the rendering
request from only a small number of hosts, including the SIDGrid
server.

Another issue is the RPC communication between the application
gadget and the container page. SIDGrid application gadgets have
to communicate with the gadget container page to retrieve the
context information such as current experiment ID and selected
data files that this application starts to analyze. As shown in
Figure 8, the Praat gadget instance has to know the pitch analysis
script and audio wave file from the ExperimentView page. In the
SIDGrid, however, the communication between gadgets and
container web pages become a cross-domain JavaScript RPC.
Being loaded in an iframe of the container page, a gadget has to
follow the JavaScript sandboxing and same-domain security
policy, thereby prohibiting its JavaScript code from accessing the
container page unless the iframe comes from the same domain.
Since the embedded SIDGrid shindig is running on the 8080 port
as a Tomcat web application, the gadget has to rely on the
OpenSocial’s gadget-to-container RPC mechanism to implement
the cross-domain communication with the SIDGrid container
page.

4.2 SIDGrid Collaboration Based on Social
Networking

OpenSocial provides the social data API for gadget developers to
build social networking applications. This social data API is
defined on the model < person, group, activity, appdata >, which
can describe the profile information for a person or the
relationship between people or activities. Web gadgets can
retrieve the social data through the API to implement social
applications. Modern research projects often involve multiple
scientists from different academic institutions. Social applications
can greatly facilitate such teamwork in terms of data sharing,
collaborative data analysis, and knowledge discoveries.

Based on the social data model, we introduce social networking
into the SIDGrid to enable the development of socially aware
gadgets for better collaboration and data sharing among SIDGrid
users. In the existing SIDGrid implementation, a group security
model allows users to create a UNIX-style group and select their
collaborators from the SIDGrid user list to add to the group for
data sharing. This group feature can be easily extended into the
OpenSocial space. For example, suppose SIDGrid user A wants to
share his experiment with his team members including user B and
user C. User A establishes a SIDGrid group for his experiment
and adds B and C to the group so that B and C can access the
experiment. In this scenario, the group relationship between A, B,
and C can be naturally described as an OpenSocial group. Any
computational workflows performed by A, B, or C to process the
experiment should become visible to all of them. Similarly, any
data update on the experiment made by A, B, or C should be
notified as an OpenSocial activity in the group.

Most features in the OpenSocial data API have been developed in
the OpenSocial reference implementation Shindig. To gadget
developers, it is a group of RESTful and JSON-RPC services that
expose the social data graph in the database of the server. Ideally
we just need to add the database connector code into the Shindig
package to query the user and group information in the SIDGrid
database. However, Shindig does not implement the Group
according to the OpenSocial specification in the general sense but
only provides the special group named “Friend” for gadgets.
Apparently the “Friend” group is too general to describe specific
data sharing groups in the SIDGrid since any two SIDGrid users
that have a common group can be regarded as friends. Therefore
we extend the implementation of the social data part in Shindig
and add more features on the SIDGrid groups and activities to the
JavaScript API that is available to gadgets.

The RESTful API for the SIDGrid social data features is shown in
Table 1.

Table 1. SIDGrid Social Data API
Type RESTful URL Explanation

/people
/{userid}
/@all-groups

List all the group for this
SIDGrid user

Group
/people
/{userid}
/{groupid}

List all the people connected to

the user {userid} in group

 {groupid}

/activities
/{guid}
/@self

Collection of activities
generated by given user

/activities/{guid}
/@self/{appid}

Collection of activities
generated by an app for
a given user

/activities
/{guid}
/{groupid}

Collection of activities
generated by an app for a
given user in a given group

Activiti
es

/activities/{guid}
/{groupid}
/{appid}

Collection of activities
generated by an app for people
 in group {groupid} belonging
 to given user {uid}

/workflow
/{userid}

List all the workflows created
by the user {userid}

/workflow
/{userid}
/{appid}

List all the workflows of the
application {appid} created by
 the user {userid}

/workflow
/{userid}
/{groupid}

List all the workflows created by
the users for the experiments in
the group {groupid} in which the
user {userid} joins

/workflow
/{userid}
/{groupid}
/{appid}

List all the workflows of the
application {appid} created by
the users for the experiments in
the group {groupid} in which the
user {userid} joins

Work
flows

/workflow
/{userid}/{expid}

List all the workflows created
by the users for the experiment
{expid}

/experiment
/{userid}

List all the experiments
created by the user (userid)

Experi
ments

/experiment
/{userid}
/{groupid}

List all the experiments of
 the group {groupid}

Collaborative application gadgets can be developed based on the
SIDGrid social data API. For instance, if members of a research
team share their experimental data in the SIDGrid, they would
like to be aware of any data update or analytical workflows
performed on the sharing dataset. Doing so requires a
collaborative workflow browsing gadget that can tell the users not
only about their own workflows but also about the workflows run
by their teammates. Figure 9 displays such a gadget running on a
SIDGrid web page (myWorkflows) under the user “Susanne,”
showing workflows created by two users in the group of
“wwjtest.”

Figure 9. Collaborative workflow history gadget.

5. Conclusion
In this paper, we describe a new Web 2.0-based application
framework of the SIDGrid, which can integrate commonly used
social and behavioral science tools and provide researchers a
collaborative web interface to run these data-intensive
applications efficiently on the TeraGrid resources. We have
developed a new SIDGrid science gateway based on this
framework and have deployed it on the SIDGrid server. A few
application gadgets have been built through the application
framework and are available to SIDGrid users. We believe that
with this simplified mechanism for application creation and
deployment, the new SIDGrid science gateway can greatly extend
the class of automated analysis experiments that can be conducted
by social and behavioral scientists. We anticipate that this new
gateway will enable these scientists to efficiently conduct near-
real-time analysis of experimental data.

Acknowledgments

This work was supported by the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of
Energy, under Contract DE-AC02-06CH11357, and by the
National Science Foundation under grant OCI-0504086.

References
[1] Bertenthal, B., Grossman, R, Hanley, D., Hereld, M, Kenny,
S., Levow, G., Papka, M., Porges, S., Rajavenkateshwaran, K.,
Stevens, R., Uram, T., and Wu, W. 2007. Social Informatics Data
Grid, E-Social Science 2007 Conference, October 7-9, 2007, Ann
Arbor, Michigan.
[2] Kandaswamy, G., Fang, L., Huang, Y., Shirasuna, S., Marru,
S., and Gannon, D. 2006. Building Web Services for Scientific
Grid Applications. IBM Journal of Research and Development
50(2-3).

[3] Krishnan, L., Stearn and B., Bhatia, Baldridge, K.K., Li,
W.W., and Arzberger, P. 2006. In Proc. IEEE International
Conference on Web Services (ICWS 2006), pp. 823-832.
[4] OpenSocial Specification, http://www.opensocial.org/
[5] Mobyle, http://bioweb2.pasteur.fr/projects/mobyle/

[6] Zhao, Y., Hategan, M., Clifford, B., Foster, I., vonLaszewski,
G., Raicu, I., Stef-Praun, T., and Wilde, M. 2007. Swift: Fast,
Reliable, Loosely Coupled Parallel Computation. In Proc. IEEE
International Workshop on Scientific Workflows, pp. 199-206.
[7] Shindig: http://incubator.apache.org/shindig/

[8] Boersma, P. 2001. Praat, a system for doing phonetics by
computer. Glot International 5(9-10) 341-345.
[9] OAuth, http://oauth.net/core/1.0

[10] Welch1, V., Barlow, J., Basney, J., and Marcusiu, D. 2006.
AAA model to support science gateways with community
accounts. Concurrency and Computation: Practice and Experience
19(6) 893-904

